

ANSWER ANY FIVE OUESTIONS.

11. Find the n^{th} differential coefficient of $e^x \sin x \sin 2x$.

12. Find the angle of intersection of the curves $r = \frac{a}{1 + \cos \theta}$ and $r = \frac{b}{1 - \cos \theta}$. 13. Find the sum to infinity of the series $1 + \frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} + ...\infty$. 14. Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$.

15. Find $L^{-1}\left[\frac{s}{(s^2+a^2)^2}\right]$.

16. If $\cos(x+iy) = \cos\theta + i\sin\theta$, then prove that $\cos 2x + \cosh 2y = 2$.

17. Express $\cos 8\theta$ in terms of $\sin \theta$.

18. Find the mean and standard deviation for the following frequency distribution:

Class Interval	0 - 4	4 - 8	8 - 12	12 - 16	16 - 20	20 - 24	24 - 28
Frequency	10	12	18	7	5	3	4

SECTION C

ANSWER ANY TWO QUESTIONS.

$$(2 \ge 20) = 40$$

19. (a) If $y = \sin(m \sin^{-1} x)$, then prove that $(1 - x^2) y_{n+2} - (2n+1) x y_{n+1} + (m^2 - n^2) y_n = 0$.

(b) Prove that
$$\log\left(\frac{n+1}{n-1}\right) = \frac{2n}{n^2+1} + \frac{1}{3}\left(\frac{2n}{n^2+1}\right)^3 + \frac{1}{5}\left(\frac{2n}{n^2+1}\right)^3 + \dots \infty$$
 (15+5)

20. (a) Find the characteristic roots and the associated characteristic vectors of the matrix

 $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}.$

- (b) A manufacturer of cotter pins knows that 5% of his products is defective. If he sells cotter pins in boxes of 100 and guarantees that not more than 10 pins will be defective, what is the approximate probability that a box will fail to meet the guaranteed quality? (12 + 8)
- 21. (a) Find the Laplace transform of $t^2 e^{-3t}$.
 - (b) Solve the equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = 4e^{-t}$ given that $y = \frac{dy}{dt} = 0$ when t = 0. (5 + 15)
- 22. (a) Express $\sin^3 \theta \cos^5 \theta$ in a series of sines of multiples of θ .
 - (b)) Separate $\tan^{-1}(x+iy)$ into real and imaginary parts. (12+8)
