LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

THIRD SEMESTER - APRIL 2013
MT 3102-MATHEMATICS FOR PHYSICS
\square Max. : 100 Marks

SECTION A

ANSWER ALL QUESTIONS.
($10 \times 2=20$)
01 . If $y=\sin (a x+b)$, find y_{n}.
02 . Find the slope of the curve $r=e^{\theta}$ at $\theta=0$.
03. If $y=x-\frac{x^{2}}{2!}+\frac{x^{3}}{3!}-\frac{x^{4}}{4!}+\ldots \infty$, then show that $x=y+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\ldots \infty$.

04 . Define symmetric matrix and give an example.
05 . Find $L\left(t^{2}+2 t\right)$.
06. Find the inverse Laplace transform of $\frac{s}{s^{2}+k^{2}}$.
07. Write down the expansion of $\tan n \theta$.
08. If $1+\tan ^{2} \theta=\sec ^{2} \theta$, then prove that $1-\tanh ^{2} x=\sec h^{2} x$.

09 . What is the chance that a leap year selected at random will contain 53 Sundays?
10. If the mean and variance of a binomial distribution is 4 and $\frac{4}{3}$. Find $P(X=0)$.

SECTION B

ANSWER ANY FIVE QUESTIONS.

11. Find the $n^{\text {th }}$ differential coefficient of $e^{x} \sin x \sin 2 x$.
12. Find the angle of intersection of the curves $r=\frac{a}{1+\cos \theta}$ and $r=\frac{b}{1-\cos \theta}$.
13. Find the sum to infinity of the series $1+\frac{3}{4}+\frac{3.5}{4.8}+\frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12}+\ldots \infty$.
14. Verify Cayley-Hamilton theorem for the matrix $A=\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$.
15. Find $L^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right]$.
16. If $\cos (x+i y)=\cos \theta+i \sin \theta$, then prove that $\cos 2 x+\cosh 2 y=2$.
17. Express $\cos 8 \theta$ in terms of $\sin \theta$.
18. . Find the mean and standard deviation for the following frequency distribution:

Class Interval	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$	$20-24$	$24-28$
Frequency	10	12	18	7	5	3	4

SECTION C

ANSWER ANY TWO QUESTIONS.
19. (a) If $y=\sin \left(m \sin ^{-1} x\right)$, then prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0$.
(b) Prove thatl $\log \left(\frac{n+1}{n-1}\right)=\frac{2 n}{n^{2}+1}+\frac{1}{3}\left(\frac{2 n}{n^{2}+1}\right)^{3}+\frac{1}{5}\left(\frac{2 n}{n^{2}+1}\right)^{5}+\ldots \infty$. $(15+5)$
20. (a) Find the characteristic roots and the associated characteristic vectors of the matrix

$$
A=\left(\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right) .
$$

(b) A manufacturer of cotter pins knows that 5\% of his products is defective. If he sells cotter pins in boxes of 100 and guarantees that not more than 10 pins will be defective, what is the approximate probability that a box will fail to meet the guaranteed quality?
21. (a) Find the Laplace transform of $t^{2} e^{-3 t}$.
(b) Solve the equation $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=4 e^{-t}$ given that $y=\frac{d y}{d t}=0$ when $t=0 .(5+15)$
22. (a) Express $\sin ^{3} \theta \cos ^{5} \theta$ in a series of sines of multiples of θ.
(b)) Separate $\tan ^{-1}(x+i y)$ into real and imaginary parts.

